Trace Gas Air Quality Products from OMI and TROPOMI Melanie Follette-Cook and Pawan Gupta Application of Satellite Observations for Air Quality and Health Exposure, Oct 9 and 11, 2019 ### **Learning Objectives** By the end of this presentation, you will be able to: - Describe existing satellite capabilities for global observations of several trace gases - Describe current data products available from the Ozone Monitoring Instrument (OMI) and the TROPOspheric Monitoring Instrument (TROPOMI) - Identify various air quality monitoring applications utilizing OMI NO₂ observations - Identify where and how to download OMI and/or TROPOMI data #### What do Satellites Measure? - Remote sensing: collecting information about an object without being in direct physical contact with it - The intensity of reflected and emitted radiation to space is influenced by the surface and atmospheric conditions - Satellite measurements contain information about the surface and atmospheric conditions ## Measuring Trace Gases from Space - Satellites detect backscattered UV, visible, and/or emitted thermal radiation - We know the distinct absorption spectra of each trace gas - We can identify a "spectral fingerprint" for each atmospheric constituent - Retrieval algorithms (a model) infer physical quantities such as number density, partial pressure, and column amount #### **Vertical Distribution** - Very little information can be obtained on the vertical distribution of trace gases in the troposphere from a nadir view - Some information on vertical distribution can be inferred by taking the altitude of the trace gas source and its lifetime into account - Examples: - NO₂ is short-lived and primarily emitted from fossil fuel combustion (e.g., cars, power plants), so most NO₂ is found near the surface #### **Data Formats & Resolutions** | Data Level | Description | |--------------|--| | Level 0 | Raw data at full instrument resolution | | Level 1A | Raw data that have been time-referenced and supplemented with information such as radiometric and geometric calibration coefficients and geo-referencing parameters. These are computed and appended, but not applied to Level 0 data. | | Level 1B | Level 1A data that has been processed to sensor units (not all instruments have Level 1B source data) | | Level 2 | Derived geophysical variables at the same resolution and location as Level 1 source data | | Level 2G & 3 | Variables mapped on uniform space-time grid scales, usually with some completeness and consistency | | Level 4 | Model output or results from analyses of lower level data (e.g. variables derived from multiple measurements) | # Trace Gases: Using Level 3 vs. Level 2 Data m - Advantages - Uniform grid - One file per day - Smaller sized files - Quality flags and filtering criteria have been applied - Limitations - Can be coarser resolution than L2 - L2 observation typically at the same location as the L1 source data ## **Spatial Resolution: Trace Gases** - Spatial resolution of current satellite instruments (10s to <10 km diameter) - good enough to map tropospheric concentration fields on local to regional scales - fine enough to resolve individual power plants and large cities - For species with short atmospheric lifetimes (e.g. NO₂), averaging over larger satellite pixels can lead to significant dilution of signals from point sources, complicating quantitative analysis and separation of emission sources - For quantitative analysis: Level 2 and high resolution gridded Level 3 data are optimal ## Perspective... Mexico City, Jan. 20, 2005 # **TROPOMI: Impact of Resolution** November 28, 2017 TROPOMI data courtesy of ESA #### TROPOMI NO₂ Spatial Resolution = $3.5 \times 7.0 \text{ km}^2$ Applications and Research Using OMI data # OMI Detects NO₂ Changes in Pollution Over Time 2005 - 2016 ## OMI Detects NO₂ Increases from ONG Activities North Dakota Suomi NPP VIIRS Lights at Night Texas ### **Temporal Variations** - Satellite observations can also be used to detect potential short term and unexpected changes in trends, such as reductions in activity due to: - economic recession - natural disasters (e.g., Hurricane Katrina) - policy interventions (e.g., Beijing Olympics) - civil unrest NO_2 Trends from OMI Damascus: -37.1 ± 10.9% Aleppo: -40.2 ± 13.6% ### **Temporal Variations** - Examine finer temporal emissions cycles - Weekly cycles - Seasonal cycles of different sources - Anthropogenic Winter - Soil Summer - Biomass Burning Dry Season Anthropogenic Soil Biomass Burning # Model-Satellite Inter-Comparison #### CMAQ Model NO₂ ### OMI Trends in NO₂ Correlate Well With Surface Trends # Estimating Surface NO₂ From the Tropospheric Column Satellites measure backscattered radiation, from which vertical column densities can be calculated Courtesy of Randall Martin # Estimating Surface NO₂ From the Tropospheric Column $$v = \frac{\Omega_{Satellite}}{\Omega_{Model}}$$ $$S = \Omega_{Sat} x \left[\frac{vS_{Model}}{v\Omega_{Model} - (v - 1)\Omega_{FT (Model)}} \right]$$ Lamsal et al. (2008) Use vertical information from an atmospheric chemistry model to estimate the relationship between the column and the surface S = Surface Concentration Ω = Tropospheric Column FT = Free Troposphere Courtesy of Randall Martin #### Ground-Level Afternoon NO₂ Inferred from OMI for 2005 **Note**: this is a research product and not an official NASA product Source: Lok Lamsal # Satellite-Based Surface NO₂ Datasets | Time Period | 1996-2012 | 2005-2007 | 2005-2016 | |-----------------------|---|--|---| | Available
Product | Annual Mean, 3-Yr
Running Mean | Annual Mean
(North America and
global) | Monthly Mean | | Instruments | GOME, SCIAMACHY,
GOME-2 | OMI | OMI | | Overpass Time | ~9:30-10:30 | ~13:30 | ~13:30 | | Product
Resolution | 0.1° x 0.1° | 0.1° x 0.1° | 0.1° x 0.1° | | Reference | <u>Geddes et al. (2015)</u> | Lamsal et al. (<u>2008</u> , <u>2010</u>) | | | \\/ o b sit o | https://sedac.ciesin.colu
mbia.edu/ | | https://avdc.gsfc.nasa.
gov/pub/data/satellite | | Website | http://fizz.phys.dal.ca/~atmos/martin/?page_id=23 | | /Aura/OMI/V03/L4/OMI
_Surface_NO2/Monthly/ | # Satellite-Derived Surface NO₂ Used in Health Applications - Anenberg et al. (2018) used annual average surface NO_2 , along with annual average $PM_{2.5}$ and annual average ozone from a model - Used to estimate the number of global asthma-related emergency room visits due to $PM_{2.5}$, O_3 , and NO_2 exposure - Noted that NO₂ impacts are likely underestimated because of the relatively coarse OMI resolution # Global Pollution Monitoring Constellation (2020-2022) #### Policy-relevant science and environmental services enabled by common observations - Improved emissions over industrialized Northern Hemisphere - Improved air quality forecasts and assimilation systems - Improved assessment, e.g., observations to support the United Nations Convention on Long Range Transboundary Air Pollution OMI and TROPOMI # **OMI vs TROPOMI** | OMI | | TROPOMI | |------------------------------------|---------------------|--| | Aura | Satellite | Sentinel-5P | | July 2004 | Launched | Oct 2017 | | nadir-viewing imaging spectrometer | Instrument | nadir-viewing imaging spectrometer | | 264 – 504 nm
(UV/VIS) | Spectral Range | 270 nm – 2.3 µm
(UV/VIS/NIR/SWIR) | | 0.42 – 0.63 nm | Spectral Resolution | 0.55 nm | | 13x24 km² at nadir | Spatial Resolution | 7 x 3.5 km ²
7 x 28 km ² (UV1 band)
7 x 7 km ² (SWIR bands) | | Daily | Global Coverage | Daily | ### **Spatial Resolution** Sentinel-5 Precursor and the upcoming Sentinels for monitoring atmospheric Composition. (2018, October). Presented at the CAMS 3rd General Assembly, Lisbon, Portugal. Retrieved from https://atmosphere.copernicus.eu/sites/default/files/2018-11/2 Zehner S5p CAMS 18.pdf # Similar measurement strategies #### **Data Granule** - Product File - covers sunlit portion of the orbit with an approx. 2,600 km wide swath - contains 60 binned pixels or scenes per viewing line - 14 or 15 granules are produced daily, providing fully contiguous coverage of the globe ### **Effect of the OMI Row Anomaly** 77 - Began in 2007 with only two rows - Grew until 2012, at which point was affecting almost 50% of the data - Affects all OMI products #### OMI Tropospheric Column NO₂ # **Products from OMI vs TROPOMI** | | TROPOMI | | |---------------------------------|--|---| | Swath, gridded (0.25° and 0.1°) | Total Column NO ₂ | Swath
(7 km x 3.5km) | | Swath, gridded
(0.25°) | Total Column SO ₂ | Swath
(7 x 3.5 km) | | Swath | Aerosol Index | Swath
(7 x 3.5 km) | | Swath, gridded
(0.1°) | Total Column HCHO | Swath
(7 x 3.5 km) | | Gridded
(0.25°) | Tropospheric and Total Column O ₃ | Swath
(7 x 3.5 km) | | | Aerosol Layer Height | Not released | | | Carbon Monoxide
(CO) | Swath
(7 km x 7 km) | | | Methane (CH₄) | Swath
(7 km x 7 km) | | | and 0.1°) Swath, gridded (0.25°) Swath Swath, gridded (0.1°) Gridded | Swath, gridded (0.25° and 0.1°) Swath, gridded (0.25°) Swath Swath Swath, gridded (0.1°) Gridded (0.1°) Gridded (0.25°) Aerosol Index Total Column HCHO Total Column HCHO Tropospheric and Total Column O ₃ Aerosol Layer Height Carbon Monoxide (CO) Methane (CH ₄) | #### **Data Access** NASA – Earthdata https://earthdata.nasa.gov/ ESA – Copernicus Open Access Hub https://scihub.copernicus.eu/